The Future of Electronics is Just One Single Molecule Thick
Clay Dillow
at 04:00 AM 24 Aug 2020
Comments 0
Molybdenum Disulfide in 2-D " width="525" height="263"/>
Molybdenum Disulfide in 2-D
IMAGE BY Image courtesy of Wang et al.
Energy // 

Where electronics are concerned, the future is two-dimensional and very, very thin. One molecule thin, to be exact. That's not quite as thin as a sheet of graphene, but new research from MIT shows that while one-atom-thick graphene shows exceptional strength and other novel properties, the future of electronics lies with materials like molybdenum disulfide (MoS2) that are a couple of atoms thicker but much, much easier to work with.

MoS2 isn't a new material by any means - it's been used as an industrial lubricant for decades - but in its 2-D form it is one of the newest and most exciting materials that electronics researchers and materials scientists have to work with. A Swiss team described its 2-D potential for the first time just last year, and now a team of MIT researchers have developed a range of very small electronic components from MoS2, components that open the door to a range of applications.

The primary factor here is bandgap, which graphene does not possess. Bandgap is a property that makes it possible to build transistors, a key component for modern electronics. Lacking bandgap, a switch made of graphene can be turned on but not off - making it difficult to get the zeros and ones necessary for digital logic. For a long time, researchers hoping to tap the other amazing traits of ultra-thin graphene to proudce better electronics tried various workarounds, but have struggled to make it work.

MoS2 doesn't have that problem. Its bandgap is built-in, inherent in its chemistry. From MoS2, MIT grad students Han Wang and Lili Yu and Associate Prof. Tomas Palacios (with help from colleagues elsewhere) have created an inverter, a NAND gate, memory, and a complex circuit known as a ring oscillator. They see applications in everything from lighting to cell phone communications, to advanced textiles with electronic properties (think: cell phone antennas or circuits woven into clothing or other fabrics).

It's so thin, it can essentially be incorporated into any other material, including glass and plastic. It could be used to create windows and mirrors that are also displays, or to help realise future technologies that have not yet gotten off the ground, like Google's augmented reality glasses. It's relatively inexpensive and easy to produce and is already generated in large quantities due to its aforementioned industrial application. And soon, the researchers predict, it could be the backbone of all kinds of electronics.

More on this over at MIT News.

[MIT News]

RELATED
Awesome New Electronics Can Dissolve and Disappear When They're No Longer Needed
A new class of electronics can dissolve and disappear on a pre-set schedule, within a few minutes or a few years, depending on when you want them to go away. They could live in the... more >
Researchers Create Stretchy 'Rubber Band' Electronics, Can Flick At People's Eyes
When we think of gadgets and electronics, we're not usually thinking of how bendy and rubbery we wish they were. Fortunately for us small minded folk, though, a research term has b... more >
An Integrated Circuit Made of Ions Could Bring Computing Into Your Cells
The human body isn't a metal machine, but it's still plenty complicated, and regulating it like a machine is tough to pull off. That's why a new discovery by Klas Tybrandt, a docto... more >
Nanomaterial May Replace Circuits, Allow For On-The-Fly Etchless Rewiring Of Electronics
You know you're in the future when people start talking about electronics that can rewire themselves on the fly. A team at Northwester University in the United States have develope... more >
 
0 COMMENTS

Leave a comment

Please provide your details to leave a comment.

The fields marked with (*) are required.


Display Name: *
Email *:
Comments *:
(Max 750 characters)
Characters remaining:
*

(letters are not case-sensitive)
Captcha

Enter the text in the image above
 
Editor's Picks
BY Anthony Fordham POSTED 03.03.2020 | 0 COMMENTS
BY Douglas Main POSTED 13.02.2020 | 0 COMMENTS
BY Colin Lecher POSTED 08.02.2020 | 0 COMMENTS